首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanism for the gas‐phase hydrogen fluoride‐mediated decomposition of peroxyacetyl nitrate (PAN) studied by DFT method
Authors:Xiao‐Xia Zhao  Feng‐Ling Liu
Institution:College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, People's Republic of China
Abstract:Density functional theory has been used to study the mechanism of the decomposition of peroxyacetyl nitrate (CH3C(O)OONO2) in hydrogen fluoride clusters containing one to three hydrogen fluoride molecules at the B3LYP/6‐311++G(d,p) and B3LYP/6‐311+G(3df,3pd) levels. The calculations clarify some of the uncertainties in the mechanism of PAN decomposition in the gas phase. The energy barrier decreases from 30.5 kcal mol?1 (single hydrogen fluoride) to essentially 18.5 kcal mol?1 when catalyzed by three hydrogen fluoride molecules. As the size of the hydrogen fluoride cluster is increased, PAN shows increasing ionization along the O? N bond, consistent with the proposed predissociation in which the electrophilicity of the nitrogen atom is enhanced. This reaction is found to proceed through an attack of a fluorine to the PAN nitrogen in concert with a proton transfer to a PAN oxygen. On the basis of our calculations, an alternative reaction mechanism for the decomposition of PAN is proposed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010
Keywords:PAN  small hydrogen fluoride clusters  decomposition  transition state  proton transfer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号