首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Separation of dsDNA in the presence of electroosmotic flow under discontinuous conditions
Authors:Huang M F  Hsu C E  Tseng W L  Lin Y C  Chang H T
Institution:Department of Chemistry, National Taiwan University, Taipei, ROC.
Abstract:Separations of phiX-174/HaeIII DNA restriction fragments have been performed in the presence of electroosmotic flow (EOF) using five different polymer solutions, including linear polyacrylamide (LPA), poly(ethylene oxide) (PEO), hydroxypropylcellulose (HPC), hydroxyethylcellulose (HEC), and agarose. During the separation, polymer solutions entered the capillary by EOF. When using LPA solutions, bulk EOF is small due to adsorption on the capillary wall. On the other hand, separation is faster and better for the large DNA fragments (> 872 base pairs, bp) using derivative celluloses and PEO solutions. Several approaches to optimum resolution and speed by controlling EOF and/or altering electrophoretic mobility of DNA have been developed, including (i) stepwise changes of ethidium bromide (0.5-5 microg/mL), (ii) voltage programming (125-375 V/cm), (iii) use of mixed polymer solutions, and (iv) use of high concentrations of Tris-borate (TB) buffers. The DNA fragments ranging from 434 to 653 bp that were not separated using 2% PEO (8,000,000) under isocratic conditions have been completely resolved by either stepwise changes of ethidium bromide or voltage programming. Compared to PEO solutions, mixed polymer solutions prepared from PEO and HEC provide higher resolving power. Using a capillary filled with 600 mM TB buffers, pH 10.0, high-speed (< 15 min) separation of DNA (pBR 322/HaeIII digest, pBR 328/ Bg/l digest and pBR 328/Hinfl digest) has been achieved in 1.5% PEO.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号