首页 | 本学科首页   官方微博 | 高级检索  
     


Folding and assembly of hemoglobin monitored by electrospray mass spectrometry using an on-line dialysis system
Authors:Brian L. Boys  Lars Konermann
Affiliation:Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
Abstract:The native structure of hemoglobin (Hb) comprises two alpha- and two beta-subunits, each of which carries a heme group. There appear to be no previous studies that report the in vitro folding and assembly of Hb from highly unfolded alpha- and beta-globin in a "one-pot" reaction. One difficulty that has to be overcome for studies of this kind is the tendency of Hb to aggregate during refolding. This work demonstrates that denaturation of Hb in 40% acetonitrile at pH 10.0 is reversible. A dialysis-mediated solvent change to a purely aqueous environment of pH 8.0 results in Hb refolding without any apparent aggregation. Fluorescence, Soret absorption, circular dichroism, and ESI mass spectra of the protein recorded before unfolding and after refolding are almost identical. By employing an externally pressurized dialysis cell that is coupled on-line to an ESI mass spectrometer, changes in heme binding behavior, protein conformation, and quaternary structure can be monitored as a function of time. The process occurs in a stepwise sequential manner, leading from monomeric alpha- and beta-globin to heterodimeric species, which then assemble into tetramers. Overall, this mechanism is consistent with previous studies employing the mixing of folded alpha- and beta-globin. However, some unexpected features are observed, e.g., a heme-deficient beta-globin dimer that represents an off-pathway intermediate. Monomeric beta-globin is capable of binding heme before forming a complex with an alpha-subunit. This observation suggests that holo-alpha-apo-beta globin does not represent an obligatory intermediate during Hb assembly, as had been proposed previously. The on-line dialysis/ESI-MS approach developed for this work represents a widely applicable tool for studying the folding and self-assembly of noncovalent biological complexes.
Keywords:
本文献已被 ScienceDirect PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号