首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stochastic simulation of reactive separations in capillary electrophoresis
Authors:Newman Carl I D  McGuffin Victoria L
Institution:Department of Chemistry, Michigan State University, East Lansing, MI 48824-1322, USA.
Abstract:A stochastic (Monte Carlo) simulation is used to investigate thermodynamic and kinetic contributions from the reversible A <--> B reaction in capillary electrophoresis (CE). The effects of equilibrium constant, rate constant, and electrophoretic mobility on the molecular zone profiles and the corresponding statistical moments are evaluated. As the reaction approaches steady state, the velocity of the zone is governed by the equilibrium constant and the electrophoretic mobilities of the reacting molecules. When the equilibrium constant is less than unity, the mean zone velocity is more similar to that of the reactant A. Conversely, when the equilibrium constant is greater than unity, the velocity is more similar to that of the product B. The extent of zone-broadening and asymmetry at steady state is dependent upon the equilibrium constant, the characteristic reaction lifetime, and the electrophoretic mobility difference between reacting molecules. If all other parameters are held constant, the plate height is greatest and skew is least when the equilibrium constant is unity. The plate height increases linearly with the characteristic reaction lifetime and electrophoretic mobility difference, whereas the skew is independent of these parameters. These conclusions have important implications for the elucidation of thermodynamic and kinetic information from experimental data.
Keywords:Capillary electrophoresis  Electrophoretic mobility  Equilibrium constant  Kinetic rate constant  Reactive separations  Stochastic simulation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号