首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis and conformational analysis of novel N(OCH3)-linked disaccharide analogues
Authors:Peri Francesco  Jiménez-Barbero Jesús  García-Aparicio Víctor  Tvaroska Igor  Nicotra Francesco
Institution:Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy. francesco.peri@unimib.it
Abstract:N(OMe)-linked disaccharide analogues, isosteric to the corresponding natural disaccharides, have been synthesized by chemoselective assembly of unprotected natural monosaccharides with methyl 6-deoxy-6-methoxyamino-alpha-D-glucopyranoside in an aqueous environment. The coupling reactions were found to be chemo- and stereoselective affording beta-(1-->6) disaccharide mimics when using Glc and GlcNAc; in the case of Gal, the beta-anomer was prevalent (beta:alpha=7:1). An iterative method for the synthesis of linear N(OMe) oligosaccharide analogues was demonstrated, based on the use of an unprotected monosaccharide building block in which an oxime functionality at C-6 is converted during the synthesis into the corresponding methoxyamino group. The conformational analysis of these compounds was carried out by using NMR spectroscopy, ab initio, molecular mechanics, and molecular dynamics methods. Optimized geometries and energies of fourteen conformers for each compound have been calculated at the B3LYP/6-31G* level. Predicted conformational equilibria were compared with the results based on NMR experiments and good agreement was found. It appears that N(OMe)-linked disaccharide analogues exhibit a slightly different conformational behavior to their parent natural disaccharides.
Keywords:carbohydrates  conformation analysis  glycosylation  NMR spectroscopy
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号