首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spectral diffusion in nitride quantum dots: Emission energy dependent linewidths broadening via giant built‐in dipole moments
Authors:C Kindel  G Callsen  S Kako  T Kawano  H Oishi  G Hönig  A Schliwa  A Hoffmann  Y Arakawa
Institution:1. Institute of Industrial Science, University of Tokyo, 4‐6‐1 Komaba, Meguro‐ku, Tokyo 153‐8505, Japan;2. Institut für Festk?rperphysik, Technische Universit?t Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
Abstract:We present a study about the origin of the huge emission linewidths broadening commonly observed for wurtzite GaN/AlN quantum dots. Our analysis is based on a statistically significant number of quantum dot spectra measured by an automatized µ‐photoluminescence mapping system applying image recognition techniques. A clear decrease of the single quantum dot emission linewidths is observed with rising overall exciton emission energy. 8‐band k · p based model calculations predict a corresponding decrease of the built‐in exciton dipole moments with increasing emission energy in agreement with the measured behavior for the emission linewidths. Based on this proportionality we explain the particular susceptibility of nitride quantum dots to spectral diffusion causing the linewidth broadening via the linear quantum‐confined Stark effect. This is the first statistical analysis of emission linewidths that identifies the giant excitonic dipole moments as their origin and estimates the native defect‐induced electric field strength to ~2 MV/m. Our observation is in contrast to less‐polar quantum dot systems as e.g. arsenides that exhibit a naturally lower vulnerability to emission linewidth broadening due to almost negligible exciton dipole moments. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:quantum dots  nitrides  quantum‐confined Stark effect  dipole moments  spectral diffusion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号