首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of metal complexation as an alternative to protonation for electrospray ionization of pharmaceutical compounds
Authors:Erwin J Alvarez  Jennifer S Brodbelt
Institution:1. Department of Chemistry and Biochemistry, The University of Texas at Austin, 78712-1167, Austin, Texas
Abstract:The use of pyridyl and polyether compounds as auxiliary ligands to promote metal complexation of a series of pharmaceutical analytes by electrospray ionization (ESI) is explored as an alternative to conventional protonation by ESI. The auxiliary ligands vary in the number and nature of binding sites, the orientation of the binding sites with respect to each other, and the conformational flexibility of the ligand during complexation of the metal ion. The ESI of ternary solutions composed of a pharmaceutical substrate, a transition metal ion salt, and an auxiliary complexation agent generate metal complexes of the type (L-H+)MII(aux)]+, where L is the pharmaceutical, M is either copper, nickel, or cobalt, and aux is the auxiliary ligand. Overall, the pyridine-type ligands are more useful for the generation of ternary metal complexes than the polyether-type ligands, which preferentially complex sodium ions and, upon collisional activation, undergo fragmentation of the polyether skeleton in addition to the structurally informative dissociation of the analytes. The auxiliary ligand that exhibits the best performance is 2,2′-dipyridine; its ternary metal complexes enhance the structural characterization of five of the pharmaceuticals by promoting a greater number of fragments relative to the CAD patterns of the protonated substrates.
Keywords:
本文献已被 ScienceDirect SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号