首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models
Authors:J N Fuchs  F Piéchon  M O Goerbig and G Montambaux
Institution:(1) IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Sachsen, Germany
Abstract:The semiclassical quantization of cyclotron orbits for two-dimensional Bloch electrons in a coupled two band model with a particle-hole symmetric spectrum is considered. As concrete examples, we study graphene (both mono and bilayer) and boron nitride. The main focus is on wave effects – such as Berry phase and Maslov index – occurring at order (h/2p)\hbar in the semiclassical quantization and producing non-trivial shifts in the resulting Landau levels. Specifically, we show that the index shift appearing in the Landau levels is related to a topological part of the Berry phase – which is basically a winding number of the direction of the pseudo-spin 1/2 associated to the coupled bands – acquired by an electron during a cyclotron orbit and not to the complete Berry phase, as commonly stated. As a consequence, the Landau levels of a coupled band insulator are shifted as compared to a usual band insulator. We also study in detail the Berry curvature in the whole Brillouin zone on a specific example (boron nitride) and show that its computation requires care in defining the “k-dependent Hamiltonian” H(k), where k is the Bloch wavevector.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号