首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancement of band magnetism and features of the magnetically ordered state in the CeB6 compound with strong electron correlations
Authors:N. E. Sluchanko  A. V. Bogach  V. V. Glushkov  S. V. Demishev  V. Yu. Ivanov  M. I. Ignatov  A. V. Kuznetsov  N. A. Samarin  A. V. Semeno  N. Yu. Shitsevalova
Affiliation:(1) Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, 119991, Russia;(2) Moscow Institute of Physics and Technology, Dolgoprudnyĭ, Moscow oblast, 141700, Russia;(3) Moscow Institute of Engineering Physics, Moscow, 115409, Russia;(4) Institute of Problems of Material Science, National Academy of Sciences of Ukraine, Kiev, 03680, Ukraine
Abstract:Precision measurements of transport and magnetic parameters of high-quality CeB6 single crystals are performed in the temperature range 1.8—300 K. It is shown that their resistivity in the temperature interval 5 K < T < T* ≈ 80 K obeys not a logarithmic law, which is typical of the Kondo mechanism of charge carrier scattering, but the law ρ ∝ T ?1/η corresponding to the weak localization regime with a critical index 1/η = 0.39 ± 0.02. Instead of the Curie-Weiss dependences, the asymptotic form χ(T) ∝ T ?0.8 is obtained for magnetic susceptibility of CeB6 in a temperature range of 15–300 K. Analysis of the field dependences of magnetization, magnetoresistance, and the Hall coefficient in the paramagnetic and magnetically ordered phases of CeB6 and comparison with the results of measurements of Seebeck coefficient, the inelastic neutron scattering coefficient, and EPR spectroscopy lead to the conclusion that the Kondo lattice model and skew scattering model cannot be used for describing the transport and thermodynamic parameters of this compound with strong electron correlations. On the basis of detailed analysis of experimental data, an alternative approach to interpreting the properties of CeB6 is proposed using (1) the assumption concerning itinerant paramagnetism and substantial renormalization of the density of electron states upon cooling in the vicinity of the Fermi energy, which is associated with the formation of heavy fermions (spin-polaron states) in the metallic CeB6 matrix in the vicinity of Ce sites; (2) the formation of ferromagnetic nanosize regions from spin polarons at 3.3 K < T < 7 K and a transition to a state with a spin density wave (SDW) at T Q ≈ 3.3 K; and (3) realization of a complex magnetic phase H-T diagram of CeB6, which is associated with an increase in the SDW amplitude and competition between the SDW and antiferromagnetism of localized magnetic moments of cerium ions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号