首页 | 本学科首页   官方微博 | 高级检索  
     


Characterizations of Arnold and Strauss’ and related bivariate exponential models
Authors:Samuel Kotz  Jose M. Ruiz
Affiliation:a School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA
b Facultad de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain
Abstract:Characterizations of probability distributions is a topic of great popularity in applied probability and reliability literature for over last 30 years. Beside the intrinsic mathematical interest (often related to functional equations) the results in this area are helpful for probabilistic and statistical modelling, especially in engineering and biostatistical problems. A substantial number of characterizations has been devoted to a legion of variants of exponential distributions. The main reliability measures associated with a random vector X are the conditional moment function defined by mφ(x)=E(φ(X)|X?x) (which is equivalent to the mean residual life function e(x)=mφ(x)-x when φ(x)=x) and the hazard gradient function h(x)=-∇logR(x), where R(x) is the reliability (survival) function, R(x)=Pr(X?x), and ∇ is the operator View the MathML source. In this paper we study the consequences of a linear relationship between the hazard gradient and the conditional moment functions for continuous bivariate and multivariate distributions. We obtain a general characterization result which is the applied to characterize Arnold and Strauss’ bivariate exponential distribution and some related models.
Keywords:Primary, 62E10   secondary, 62H05
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号