首页 | 本学科首页   官方微博 | 高级检索  
     


Probing the behavior of confined water by proton-transfer reactions
Authors:Angulo G  Organero J A  Carranza M A  Douhal A
Affiliation:Departamento de Química Física, Sección de Químicas, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
Abstract:The picosecond dynamics of a bifunctional and H-bonding molecule, 7-hydroxyquinoline (7HQ), has been studied in a reverse micelle with increasing water content. The fluorescence kinetics has a complex behavior as the water content is changed. All reactions are irreversible, and a two-step mechanism is invoked to explain the observations. H2O/D2O exchange and excitation energy effects show that the second step has a higher barrier and that the corresponding reaction occurs through tunneling. The results clearly indicate two regimes of water nanopool behavior switching at W0 approximately 5 (W0 = [water]/[surfactant]). Water collective dynamics explains these observations. The lower fluidity of confined water within the reverse micelle with respect to normal bulk water alters the related H-bond network dynamics and therefore is responsible for the slower proton-transfer processes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号