Franck-Condon theory of reactive scattering |
| |
Authors: | K.Hang Fung Karl F. Freed |
| |
Affiliation: | James Franck Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA |
| |
Abstract: | A Franck-Condon theory of reactive scattering is introduced which generalizes previous works in a number of respects. We consider the collinear AB + C → A + BC reaction where A, B, and C may be polyatomic species and show how the multi-dimensional continuum-continuum Franck-Condon integral can exactly be reduced to a two-dimensional one involving the nonorthogonal reaction coordinates on the reactant and product diabatic surfaces. These integrals are then written in a rapidly convergent series of products of one-dimensional bound-continuum integrals of a form closely related to those studied in recent theories of photodissociation where accurate analytical and numerical methods are available for treating them. The theory is applied to the case of the D + Hl isotope exchange for a model surface to enable a comparison of exact quantum calculations with those of the Franck-Condon theory for the identical surface in both cases. The calculations are all performed at energies where the reaction is classically forbidden. The relative Dl vibrational distributions (as a function of initial Hl state) are accurately reproduced in a fashion that is fairly insensitive to the choice of the reactant and product diabatic surfaces, but the absolute probabilities are shown to be sensitively dependent on this choice. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|