首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rotational diffusion in aprotic and protic solvents
Authors:Kenneth G Spears  Laurence E Cramer
Institution:Department of Chemistry, Northwestern University, Evanston, Illinois 60201, USA
Abstract:We present the orientational relaxation times in protic and aprotic solvents for rose bengal in its lowest excited singlet state. The method uses a mode locked dye laser for polarized excitation, and time correlated single photon counting for determination of the time resolved polarized fluorescence. The observed orientational decay for the dipolar aprotic solvents and the alcohols are in agreement with the values predicted by the Stokes-Einstein diffusion equation. In the latter solvents, volume and shape corrections must be made for attachment of the alcohol to the two anion sites of the dye molecule. The solvent N-methylformamide, however, shows rose bengal reorienting much faster than the alcohols. Our interpretation of this data suggests that agreement with the Stokes-Einstein equation (stick boundary conditions) is coincidental. We propose a solvent torque model in which the solvent interaction at each anion site of rose bengal controls the deviations from an expected slip boundary condition. This qualitative model is used to correlate our data as well as relevant data in the literature. The values in picoseconds for the observed orientational relaxation times are given in parenthesis; acetone (70), DMF (160), DMSO (420), MeOH (190), EtOH (450), isopropanol (840), NMF (500).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号