Amphiphilic co-networks with moisture-induced surface segregation for high-performance nonfouling coatings |
| |
Authors: | Wang Yapei Finlay John A Betts Douglas E Merkel Timothy J Luft J Christopher Callow Maureen E Callow James A DeSimone Joseph M |
| |
Affiliation: | Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. |
| |
Abstract: | Herein we report the design of a photocurable amphiphilic co-network consisting of perfluoropolyether and poly(ethylene glycol) segments that display outstanding nonfouling characteristics with respect to spores of green fouling alga Ulva when cured under high humidity conditions. The analysis of contact angle hysteresis revealed that the poly(ethylene glycol) density at the surface was enhanced when cured under high humidity. The nonfouling behavior of nonbiocidal surfaces against marine fouling is rare because such surfaces usually reduce the adhesion of organisms rather than inhibit colonization. We propose that the resultant surface segregation of these materials induced by high humidity may be a promising strategy for achieving nonfouling materials, and such an approach is more important than simply concentrating poly(ethylene glycol) moieties at an interface because the low surface energy has been maintained in our work. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|