首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Semiconducting polymers based on charge-transfer complexes. IV. Electrical properties and structure of polymeric charge-transfer complexes
Authors:James W Summers  Morton H Litt
Abstract:Model electron donor molecules, 10-methylphenothiazine and 4-(methylthio)anisole, and polymeric electron donors which contained these molecules on the side chains of N-acyl-substituted polyethylenimines, were complexed with the electron acceptors, dichlorodicyanoquinone (DDQ), tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE), and tetranitrofluorenone (TNF). The model donors formed 1:1 complexes with all the acceptors except TCNE. The polymeric donors formed amorphous complexes with DDQ, TCNQ, and TCNE. Crystalline complexes were formed with TNF which had low melting points (lower than the model complexes and the pure polymer). This is apparently due to poor lateral packing of the polymer chains. Electrical resistivities were lower for all the polymer complexes than for the corresponding model complexes. Electrical resistivity also decreased with increase in complex crystallinity. In the best case the polymer complex was two hundred times as conducting as the model. The concentration of unpaired electrons measured by EPR was nearly independent of temperature. Most of the electrons seen are trapped and do not participate in conduction. Thermal activation energies for conduction were in the range of 0.5–1.8 eV and were nearly equal for the model and corresponding polymeric complexes. Elongation of polymer complex with TCNQ by rolling produces a decrease in resistivity in the roll direction, although the complex is amorphous. This reinforces the hypothesis that conduction is parallel to the polymer backbone. A polymer–tetranitrofluorenone complex was photoconducting, though the photoconductivity was smaller than the dark conductivity at the level of illumination used. Dember and Seebeck effects indicated that the major carrier in the complex was holes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号