首页 | 本学科首页   官方微博 | 高级检索  
     


Improved electrochemical performance of LiNi0.5Mn1.5O4 as cathode of lithium ion battery by Co and Cr co-doping
Authors:Dongrui Chen  Benzhen Li  Youhao Liao  Hongwei Lan  Haibin Lin  Lidan Xing  Yating Wang  Weishan Li
Affiliation:1. School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
2. Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou, 510006, China
3. Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou, 510006, China
Abstract:Three samples, LiNi0.5Mn1.5O4, LiNi0.4Mn1.4Co0.2O4, and LiNi0.4Mn1.4Cr0.15Co0.05O4, were prepared by sol–gel method and characterized by powder X-ray diffraction, Fourier transformed infrared spectroscope, scanning electron microscopy, Brunauer–Emmett–Teller surface area, four-probe resistance, cyclic voltammetry, electrochemical impedance spectroscopy, and charge–discharge test. It is found that the co-doped sample LiNi0.4Mn1.4Cr0.15Co0.05O4 exhibits an improved performance compared with the Co-doped sample LiNi0.4Mn1.4Co0.2O4 and the undoped sample LiNi0.5Mn1.5O4, especially at elevated temperature. At 25 °C, the discharge capacity of LiNi0.4Mn1.4Cr0.15Co0.05O4 is 130 mAh g?1 at 0.1 C and 103 mAh g?1 at 10 C. At an elevated temperature (55 °C), its 1 C discharge capacity is 136 mAh g?1 and maintains 95.6 % of its initial capacity after 100 cycles. Compared with the reported results of LiNi0.4Mn1.4Co0.2O4 and LiNi0.475Mn1.475Co0.05O4, the co-doped sample LiNi0.4Mn1.4Cr0.15Co0.05O4, with least content of Co, 0.05, possesses not only the high C-rate capacity but also the structural stability. The mechanism on the electrochemical performance improvement of LiNi0.5Mn1.5O4 by the co-doping was discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号