首页 | 本学科首页   官方微博 | 高级检索  
     


A high-field solid-state 35/37Cl NMR and quantum chemical investigation of the chlorine quadrupolar and chemical shift tensors in amino acid hydrochlorides
Authors:Chapman Rebecca P  Bryce David L
Affiliation:Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, CanadaK1N6N5.
Abstract:A series of six L-amino acid hydrochloride salts has been studied by 35/37Cl solid-state NMR spectroscopy (at 11.75 and 21.1 T) and complementary quantum chemical calculations. Analyses of NMR spectra acquired under static and magic-angle-spinning conditions for the six hydrochloride salts, those of aspartic acid, alanine, cysteine, histidine, methionine and threonine, allowed the extraction of information regarding the chlorine electric field gradient (EFG) and chemical shift tensors, including their relative orientation. Both tensors are found to be highly dependent on the local environment, with chlorine-35 quadrupolar coupling constants (CQ) ranging from -7.1 to 4.41 MHz and chemical shift tensor spans ranging from 60 to 100 ppm; the value of CQ for aspartic acid hydrochloride is the largest in magnitude observed to date for an organic hydrochloride salt. Quantum chemical calculations performed on cluster models of the chloride ion environment demonstrated agreement between experiment and theory, reproducing CQ to within 18%. In addition, the accuracy of the calculated values of the NMR parameters as a function of the quality of the input structure was explored. Selected X-ray structures were determined (L-Asp HCl; L-Thr HCl) or re-determined (L-Cys HCl.H2O) to demonstrate the benefits of having accurate crystal structures for calculations. The self-consistent charge field perturbation model was also employed and was found to improve the accuracy of calculated quadrupolar coupling constants, demonstrating the impact of the neighbouring ions on the EFG tensor of the central chloride ion. Taken together, the present work contributes to an improved understanding of the factors influencing 35/37Cl NMR interaction tensors in organic hydrochlorides.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号