首页 | 本学科首页   官方微博 | 高级检索  
     


Calibrating a J2 plasticity material model using a 2D inverse finite element procedure
Authors:Hasan Charkas  Hayder Rasheed  Yacoub Najjar
Affiliation:1. Structural & Fracture Mechanics Unit, AREVA NP Inc., Lynchburg, VA 24501, USA;2. Department of Civil Engineering, Kansas State University, Manhattan, KS 66506, USA
Abstract:Material models are the key ingredients to accurately capture the global mechanical response of structural systems. The use of finite element analysis has proven to be effective in simulating nonlinear engineering applications. However, the choice of the appropriate material model plays a big role in the value of the numerical predictions. Such models are not expected to exactly reproduce global experimental response in all cases. Alternatively, the measured global response at specific domain or surface points can be used to guide the nonlinear analysis to successively extract a representative material model. By selecting an initial set of stress–strain data points, the load–displacement response at the monitoring points is computed in a forward incremental analysis without iterations. This analysis retains the stresses at the integration points. The corresponding strains are not accurate since the computed displacements are not anticipated to match the measured displacements at the monitoring points. Therefore, a corrective incremental displacement analysis is performed at the same load steps to adjust for displacements and strains everywhere by matching the measured displacements at the monitoring points. The stress–strain vectors at the most highly stressed integration point are found to establish an improved material model. This model is used within a multi-pass incremental nonlinear finite element analysis until the discrepancy between the measured and the predicted structural response at the monitoring points vanishes. The J2 flow theory of plasticity is used as a constitutive framework to build the tangent elastic–plastic matrices. The applicability of the proposed approach is demonstrated by solving 2D inverse continuum problems. The comparisons presented support the effectiveness of the proposed approach in accurately calibrating the J2 plasticity material model for such problems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号