首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir force
Authors:RC Batra  M Porfiri  D Spinello
Institution:1. Department of Engineering Science & Mechanics, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA;2. Department of Mechanical and Aerospace Engineering, Polytechnic University, Brooklyn, NY 11201, USA;3. The Bradley Department of Electrical & Computer Engineering, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
Abstract:We consider the von Kármán nonlinearity and the Casimir force to develop reduced-order models for prestressed clamped rectangular and circular electrostatically actuated microplates. Reduced-order models are derived by taking flexural vibration mode shapes as basis functions for the transverse displacement. The in-plane displacement vector is decomposed as the sum of displacements for irrotational and isochoric waves in a two-dimensional medium. Each of these two displacement vector fields satisfies an eigenvalue problem analogous to that of transverse vibrations of a linear elastic membrane. Basis functions for the transverse and the in-plane displacements are related by using the nonlinear equation governing the plate in-plane motion. The reduced-order model is derived from the equation yielding the transverse deflection of a point. For static deformations of a plate, the pull-in parameters are found by using the displacement iteration pull-in extraction method. Reduced-order models are also used to study linear vibrations about a predeformed configuration. It is found that 9 basis functions for a rectangular plate give a converged solution, while 3 basis functions give pull-in parameters with an error of at most 4%. For a circular plate, 3 basis functions give a converged solution while the pull-in parameters computed with 2 basis functions have an error of at most 3%. The value of the Casimir force at the onset of pull-in instability is used to compute device size that can be safely fabricated.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号