首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method
Authors:S Sakata  F Ashida  T Kojima
Institution:Department of Electronic and Control Systems Engineering, Interdisciplinary Faculty of Science and Engineering, Shimane University 1060, Nishikawatsu-cho, Matsue City 690-8504, Japan
Abstract:This paper describes a methodology for evaluation of influence of microscopic uncertainty in material properties and geometry of a microstructure on a homogenized macroscopic elastic property of an inhomogeneous material. For the analysis of the stochastic characteristics of a homogenized elastic property, the first-order perturbation method is used. In order to analyze the influence of microscopic geometrical uncertainty, the perturbation-based equivalent inclusion method is formulated. In this paper, an analytical form of the perturbation term using the equivalent inclusion method is provided.As a numerical example, macroscopic stochastic characteristics such as an expected value or variance of the homogenized elastic tensor of a unidirectional fiber reinforced plastic, which is caused by microscopic uncertainty in material properties or geometry of a microstructure, are estimated with computing the first order perturbation term of the homogenized elastic tensor. Compared the results of the proposed method with the results of the Monte-Carlo simulation, validity, effectiveness and a limitation of the perturbation-based homogenization method is investigated.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号