首页 | 本学科首页   官方微博 | 高级检索  
     


Controlled synthesis of hollow magnetic Fe3O4 nanospheres: Effect of the cooling rate
Affiliation:1. Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China;2. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
Abstract:The controlled synthesis of hollow magnetite (Fe3O4) nanospheres of varying sizes and structures was successfully obtained via a facile solvothermal process and varying cooling processes. The Fe3O4 nanospheres were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and superconducting quantum interference device magnetometry. The diameters of the as-synthesized nanospheres were controlled at around 500–700 nm by simply changing the cooling rate, which had an obvious influence on the morphology and magnetic properties of these Fe3O4 nanospheres. While a low cooling rate triggered the formation and extension of the cracks present in the Fe3O4 nanospheres, a sudden drop of temperature tended to favor multi-site nucleation of the crystals as well as the formation of compact and smooth hollow nanospheres with superior crystallinity and high saturation magnetization. The growth mechanism of hollow magnetite oxide nanospheres was proposed and the correlation between the structure and the magnetic properties of the hollow nanospheres was discussed, which promises the potential of the hollow nanospheres in various applications such as drug delivery and cell separation.
Keywords:Solvothermal method  Hollow structure  Cooling rate  Magnetic property
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号