首页 | 本学科首页   官方微博 | 高级检索  
     


A novel hybrid solid-like fluid-like (SLFL) method for the simulation of dry granular flows
Affiliation:1. Department of Applied Mathematics, Ivanovo State Power Engineering University, Russia;2. Centre RAPSODEE, UMR CNRS 5302, Ecole des Mines d’Albi-Carmaux, Campus Jarlard, Route de Teillet, 81000 Albi, France;1. Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;2. Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;1. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China;2. Chair of Fluid Dynamics, Department of Mechanical Engineering, Technische Universität Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany;3. Institute of Geotechnical Engineering (IGT), Universitaet fuer Bodenkultur, Feistmantelstrasse 4, 1180 Vienna, Austria
Abstract:This paper proposes a novel hybrid method to simulate the dry granular flow of materials over a wide range of inertial numbers that simultaneously covers the quasi-static and dense granular flow regimes. To overcome the lack of incremental objectivity whenever large deformations occur in solid-like regimes and to remove computational singularities in fluid-like regimes close to rest, the elastic–perfectly plastic theory based on the Drucker–Prager yield criterion is combined with the theory of dense granular flows. By implementing some new modifications at the boundaries and removing all ghost particles, smoothed particle hydrodynamics (SPH) is used as the framework for the method. A number of benchmark problems have been solved to show the capabilities of the new modified SPH method. Precise prediction of both location and pressure makes the modifications comparable with the previous works on SPH. Finally, the method is used to solve the classic 2D dry granular cliff collapse problem and to model dry granular material flow inside a rotary drum. The outcomes of the numerical simulation show good agreement with tabletop experiments and published results.
Keywords:SPH"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0010"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  smoothed particle hydrodynamics  GR-SPH"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0020"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Ghost removed SPH  TCF"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0030"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  truncation correction factor  GLP"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0040"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  glued liner particle  HLP"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0050"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  hung liner particles  NDT"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0060"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  non-dimensional time  NDV"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0070"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  non-dimensional velocity  Solid-like  Fluid-like  Granular flow  Smoothed particle hydrodynamics  Inertial number  Cliff collapse
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号