首页 | 本学科首页   官方微博 | 高级检索  
     


Magnetic Properties of Monomer and Dimer Tetrahedral VOx Entities Dispersed on Amorphous Silica-based Materials: Prediction of EPR Parameters from Relativistic DFT Calculations and Broken Symmetry Approach to Exchange Couplings
Authors:Piotr Pietrzyk  Zbigniew Sojka
Affiliation:(1) Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
Abstract:Molecular structures of the isolated tetrahedral oxovanadium(IV) and bridged μ-oxo-divanadium(IV) complexes hosted by the clusters mimicking surfaces of amorphous silica-based materials were investigated using density functional theory (DFT) calculations. Principal values of the g and A tensors for the monomer vanadyl species were obtained using the coupled-perturbed DFT level of theory and the spin–orbit mean-field approximation (SOMF). Magnetic exchange interaction for the μ-oxo bridged vanadium(IV) dimer was investigated within the broken symmetry approach. An antiferromagnetic coupling of the individual magnetic moments of the vanadium(IV) centers in the [VO–O–VO]2+ bridges was revealed and discussed in detail. The coupling explains pronounced decrease of the electron paramagnetic resonance signal (EPR) intensity, observed for the reduced VO x /SiO2 samples with the increasing coverage of vanadia, in terms of transformation of the paramagnetic monomer species into the dimers with S = 0 ground state.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号