Quantum fluid dynamics based current-density functional study of a helium atom in a strong time-dependent magnetic field |
| |
Authors: | Vikas |
| |
Affiliation: | (1) Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;(2) Department of Energy Sciences, Tokyo Institute of Technology, Yokohama 226-8502, Japan |
| |
Abstract: | Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 1011 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schr?dinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >109 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >109 G, the conventional TD-DFT based approach differs “dynamically” from the CDFT based approach under similar computational constraints. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|