首页 | 本学科首页   官方微博 | 高级检索  
     


Development of epitaxial silicon lattice-matched insulators: silicon heterostructures for quantum confinement
Authors:Wiley P. Kirk   Kevin Clark   Eduardo Maldonado   Nasir Basit   Robert T. Bate  Gregory F. Spencer
Abstract:Epitaxial films of the wide-bandgap II–VI beryllium chalcogenide semiconductors, BeTe, BeSe, and BeSeTe were grown on arsenic-terminated silicon substrates by MBE. Silicon was also epitaxially regrown on Be-chalcogenide films. Initial structural characterization revealed the desired smooth two-dimensional nature of the layer growth. The composition of BeSeTe ternary films was governed by the Be/Se flux ratio during deposition rather than by the Se/Te flux ratio. The variation in Be/Se flux ratio or in the sticking coefficients due to temperature gradients led to radial compositional inhomogeneity. Current versus temperature measurements of the Be-chalcogenide films at elevated temperatures analyzed assuming thermionic emission over the heterojunction barrier, showed conduction band offsets of 1.2 eV for the BeSe0.41Te0.59/As/Si and 1.3 eV for the BeSe/As/Si heterostructures. At room temperature, current density through BeSe/Si and BeSe0.41Te0.59/Si films was mid-10 − 9A cm − 2at 0.1 MV cm − 1, similar to previously reported values for ZnS/Si, while BeTe/Si films had orders of magnitude higher current density, possibly due to interfacial recombination.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号