首页 | 本学科首页   官方微博 | 高级检索  
     


Etching of SiC by energetic F2: Molecular dynamics simulation
Authors:F. Gou
Affiliation:School of Electronic Science and Information Technology, 550025 Guizhou Province, PR China
Abstract:Molecular dynamics (MD) simulations were performed to investigate F2 continuously bombarding silicon carbide (SiC) surfaces with energies in the range of 50-200 eV at normal incidence and room temperature. The Tersoff-Brenner form potential was used. The simulation results show that the uptake of F atoms, the etch yields of C and Si from the initial substrate, and the surface structure profile are sensitive to the incident energy. Like occurrence in Si etching, steady-state etching is observed and an F-containing reaction layer is formed through which Si and C atoms are removed. A carbon-rich surface layer after bombarding by F2 is observed which is in good agreement with experiments. In the reaction layer, SiF in SiF2 species are dominant; with increasing incident energy, the total fraction of SiF and SiF2 increases, while the amount of SiF3 and SiF4 decreases. Finally, etching mechanisms are discussed.
Keywords:52.65.Yy   81.65.Cf   52.77.Dq
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号