首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon
Authors:Yen-Hung Lin  Ping-Feng Yang  Yi-Shao Lai
Institution:a Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan 701, ROC
b Central Labs, Advanced Semiconductor Engineering, Inc., 26 Chin 3rd Rd., Nantze Export Processing Zone, Nantze, Kaohsiung, Taiwan 811, ROC
c Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan, ROC
Abstract:Molecular dynamics (MD) simulations of nanoindentation are carried out to investigate the phase transformations in Si with a spherical indenter. Since the phase transformation induced by deformation in micro-scale is closely related to the carrier mobility of the material, it has become a key issue to be investigated for the chips especially with smaller feature size. Up to now, however, it is not possible to carry out the nanoindentation experimentally in such a small feature. Consequently, molecular dynamic simulation on nanoindentation is resorted to and becomes a powerful tool to understand the detailed mechanisms of stress-induced phase transformation in nano-scale. In this study, the inter-atomic interaction of Si atoms is modeled by Tersoff's potential, while the interaction between Si atoms and diamond indenter atoms is modeled by Morse potential. It is found that the diamond cubic structure of Si in the indentation zone transforms into a phase with body-centred tetragonal structure (β-Si) just underneath the indenter during loading stage and then changes to amorphous after unloading. By using the technique of coordinate number the results reveal that indentation on the (0 0 1) surface exhibits significant phase transformation along the <1 1 0> direction. In addition, indentation on the (1 1 0) surface shows more significant internal slipping and spreading of phase transformation than on the (0 0 1) surface. Furthermore, during the indentation process phase transformations of Si are somewhat reversible. Parts of transformed phases that are distributed over the region of elastic deformation can be gradually recovered to original mono-crystal structure after unloading.
Keywords:Molecular dynamics simulations  Nanoindentation  Silicon  Phase transformation  β-Si
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号