首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Small-signal modeling of graphene barristors
Institution:1. King Saud University, Department of Physics & Astronomy, College of Sciences, 11451, Riyadh, Saudi Arabia;2. Université de Monastir, Laboratoire de Micro-Optoélectronique et Nanostructures (LMON), Faculté des Sciences, Avenue de l''environnement, 5019, Monastir, Tunisia;3. NRC of Canada, Canadian Photonics Fabrication Centre, 1200, Montreal Rd., Ottawa, K1A 0R6, Canada;4. Université de Lyon, Institut des Nanotechnologies de Lyon (INL)-UMR5270-CNRS, INSA-Lyon, 7 avenue Jean Capelle, 69621, Villeurbanne, France;5. Univerité de Grenoble Alpes, LTM, F-38000, Grenoble, France;6. CNRS, LTM, F-38000, Grenoble, France;7. Institut Interdisciplinaire d''Innovation Technologique (3IT), and Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, QC, Canada;1. Department of Engineering Mechanics, Northwestern Polytechnical University, Xi''an 710072, PR China;2. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi''an 710064, PR China;1. State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People''s Republic of China;2. Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People''s Republic of China;3. Jinan Institute of Quantum Technology, SAICT, Jinan 250101, People''s Republic of China;1. Department of Physics, University of Kalyani, Kalyani 741235, West Bengal, India;1. Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich Béla tér 1, Hungary;2. MTA-SZTE “Lendület” Porous Nanocomposites Research Group, H-6720 Szeged, Rerrich Béla tér 1, Hungary;3. MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, H-6720 Szeged, Rerrich Béla tér 1, Hungary
Abstract:This paper presents a small-signal model for graphene barristor, a promising device for the future nanoelectronics industry. Because of the functional similarities to the conventional FET transistors, the same configuration and parameters, as those of FETs, are assumed for the model. Transconductance, output resistance, and parasitic capacitances are the main parameters of the small signal equivalent circuit modeled in this work. Recognizing the importance of physical modeling of novel semiconductor devices, we develop physical compact expressions for the device radio-frequency characteristics. Furthermore, we clarify the physics behind the variation of the characteristics as the device parameters change. We also validate our model results with available simulation results. Impact of equilibrium Schottky barrier height of the graphene–silicon junction on the radio frequency performance of barristor is investigated, too.
Keywords:Barristor  Graphene  Schottky  Small-signal modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号