首页 | 本学科首页   官方微博 | 高级检索  
     


Transportation of dry fine powders by coordinated friction manipulation
Authors:Paul Dunst  Peter Bornmann  Tobias Hemsel  Walter Littmann  Walter Sextro
Affiliation:1. Chair of Mechatronics and Dynamics, University of Paderborn;2. ATHENA Technologie Beratung GmbH, Paderborn
Abstract:The transportation of dry fine powders is an emerging technologic task, as in biotechnology, pharmaceutical or coatings industry particle sizes of processed powders are getting smaller and smaller. Fine powders are primarily defined by the fact that adhesive and cohesive forces outweigh the weight forces. This leads to mostly unwanted agglomeration (clumping) and adhesion to surfaces, what makes it more difficult to use conventional conveyor systems (e. g. pneumatic or vibratory conveyors) for transport. A rather new method for transporting these fine powders is based on ultrasonic vibrations, which are used to reduce friction and adhesion between powder and the substrate. One very effective set-up consists of a pipe, which vibrates harmoniously in axial direction at low frequency combined with a pulsed radial high frequency vibration. The high frequency vibration accelerates the particles perpendicular to the surface of the pipe, which in average leads to lower normal and thereby smaller friction force. With coordinated friction manipulation the powder acceleration can be varied so that the powder may be greatly accelerated and only slightly decelerated in each excitation period of the low frequency axial vibration of the pipe. The amount of powder flow is adjustable by vibration amplitudes, frequencies, and pulse rate, which makes the device versatile for comparable high volume and fine dosing using one setup. Within this contribution an experimental set-up consisting of a pipe, a solenoid actuator for axial vibration and a piezoelectric actuator for the radial high frequency vibration is described. An analytical model is shown, that simulates the powder velocity. Finally, simulation results are validated by experimental data for different driving parameters such as amplitude of low frequency vibration, pipe material and inclination angle. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号