首页 | 本学科首页   官方微博 | 高级检索  
     


Reduction pathway of end-on terminally coordinated dinitrogen. V. N-N bond cleavage in Mo/W hydrazidium complexes with diphosphine coligands. Comparison with triamidoamine systems
Authors:Mersmann Klaus  Horn Kay H  Böres Natascha  Lehnert Nicolai  Studt Felix  Paulat Florian  Peters Gerhard  Ivanovic-Burmazovic Ivana  van Eldik Rudi  Tuczek Felix
Affiliation:Institut für Anorganische Chemie, Christian-Albrechts-Universit?t Kiel, Otto Hahn Platz 6/7, 24098 Kiel, Germany.
Abstract:N-N cleavage of the dialkylhydrazido complex [W(dppe)2(NNC5H10)] (B(W)) upon treatment with acid, leading to the nitrido/imido complex and piperidine, is investigated experimentally and theoretically. In acetonitrile and at room temperature, B(W) reacts orders of magnitude more rapidly with HNEt3BPh4 than its Mo analogue, [Mo(dppe)2(NNC5H10)] (B(Mo)). A stopped-flow experiment performed for the reaction of B(W) with HNEt3BPh4 in propionitrile at -70 degrees C indicates that protonation of B(W) is completed within the dead time of the stopped-flow apparatus, leading to the primary protonated intermediate B(W)H+. Propionitrile coordination to this species proceeds with a rate constant k(obs(1)) of 1.5 +/- 0.4 s(-1), generating intermediate RCN-B(W)H+ (R = Et) that rapidly adds a further proton at Nbeta and then mediates N-N bond splitting in a slower reaction (k(obs(2)) = 0.35 +/- 0.08 s(-1), 6 equiv of acid). k(obs(1)) and k(obs(2)) are found to be independent of the acid concentration. The experimentally observed reactivities of B(Mo) or B(W) with acids in nitrile solvents are reproduced by DFT calculations. In particular, geometry optimization of models of solvent-coordinated, Nbeta-protonated intermediates is found to lead spontaneously to separation into the nitrido/imido complexes and piperidine/piperidinium, corresponding to activationless heterolytic N-N bond cleavage processes. Moreover, DFT indicates a spontaneous cleavage of nonsolvated B(W) protonated at Nbeta. In the second part of this article, a theoretical analysis of the N-N cleavage reaction in the Mo(III) triamidoamine complex [HIPTN3N]Mo(N2) is presented (HIPTN3N = hexaisopropylterphenyltriamidoamine). To this end, DFT calculations of the Mo(III)N2)triamidoamine complex and its protonated and reduced derivatives are performed. Calculated structural and spectroscopic parameters are compared to available experimental data. N-N cleavage most likely proceeds by one-electron reduction of the Mo(V) hydrazidium intermediate [HIPTN3N]Mo(NNH3)+, which is predicted to have an extremely elongated N-N bond. From an electronic-structure point of view, this reaction is analogous to that of Mo/W hydrazidium complexes with diphos coligands. The general implications of these results with respect to synthetic N2 fixation are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号