首页 | 本学科首页   官方微博 | 高级检索  
     


Intrinsic catalytic role of mesoporous silica in preferential oxidation of carbon monoxide in excess hydrogen
Authors:Huang Shengjun  Hara Kenji  Fukuoka Atsushi
Affiliation:Catalysis Research Center, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
Abstract:We have studied the intrinsic catalytic role of MCM-41 mesoporous silica in preferential oxidation of CO in excess H(2) (PROX). Two types of MCM-41 supports (MCM-41A and MCM-41B) were obtained from the same pristine as-synthesized materials by using different procedures for surfactant removal: one-step calcination or two-step extraction-calcination. Although two kinds of Pt catalysts prepared from the MCM-41 supports exhibit high similarity in apparent physicochemical parameters such as Pt morphology, particle-size distribution, electronic states, support architecture, and pore-size distribution, they show a dramatic difference in catalytic activity (ca. 100?% versus 10?% CO conversions at 298?K). This feature motivated us to investigate the catalytic role of MCM-41 in the PROX reaction. By means of infrared experiments with the isotope tracer technique, it was revealed that the reactive microenvironment at the interface between Pt and the MCM-41A support is the origin of the high activity. On the highly active Pt/MCM-41A catalyst, interfacial silanols play a decisive role in the ignition of CO oxidation, and gaseous O(2) and H(2) are dissociated on CO-free Pt sites created by the interfacial reaction. The dissociated oxygen and hydrogen are proposed to sustain the catalytic cycle in the form of regenerated silanols on the support, which is catalyzed by the Pt surface in the presence of H(2).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号