首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic modeling of a Stewart platform using the generalized momentum approach
Authors:António M Lopes
Institution:1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;2. Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China;3. Tianjin Long March Launch Vehicle Manufacturing Co. Ltd., Tianjin 300462, China;1. Universidad Politécnica de Tulancingo, Calle Ingenierías No. 100 C.P., Tulancingo 43629, Hidalgo, Mexico;2. LIRMM, University of Montpellier, CNRS, Montpellier, France;3. Cuerpo Académico de Control e Instrumentación. División de Ingenierías, Universidad Politécnica de Tulancingo, Calle Ingenierías No. 100, Tulancingo C.P. 43629, Hidalgo, Mexico;4. CONACYT-Centro de Investigación en Ciencias de la Información Geoespacial. Parque Científico Tecnológico de Yucatán, Biblioteca Central, Tercer piso. Carretera Sierra Papacal – Chuburná Pto., Km 5 C.P., Mérida 97302, Yucatán, Mexico;1. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China;2. Department of Aerospace Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada;3. School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China;4. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:Dynamic modeling of parallel manipulators presents an inherent complexity, mainly due to system closed-loop structure and kinematic constraints.In this paper, an approach based on the manipulator generalized momentum is explored and applied to the dynamic modeling of a Stewart platform. The generalized momentum is used to compute the kinetic component of the generalized force acting on each manipulator rigid body. Analytic expressions for the rigid bodies inertia and Coriolis and centripetal terms matrices are obtained, which can be added, as they are expressed in the same frame. Gravitational part of the generalized force is obtained using the manipulator potential energy. The computational load of the dynamic model is evaluated, measured by the number of arithmetic operations involved in the computation of the inertia and Coriolis and centripetal terms matrices. It is shown the model obtained using the proposed approach presents a low computational load. This could be an important advantage if fast simulation or model-based real-time control are envisaged.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号