首页 | 本学科首页   官方微博 | 高级检索  
     


Comparing the quality and predictiveness between 3D QSAR models obtained from manual and automated alignment
Authors:Tervo Anu J  Nyrönen Tommi H  Rönkkö Toni  Poso Antti
Affiliation:Department of Pharmaceutical Chemistry, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland. anu.tervo@csc.fi
Abstract:A set of 113 flexible cyclic urea inhibitors of human immunodeficiency virus protease (HIV-1 PR) was used to compare the quality and predictive power of CoMFA and CoMSIA models for manually or automatically aligned inhibitor set. Inhibitors that were aligned automatically with molecular docking were in agreement with information obtained from existing X-ray structures. Both alignment methods produced statistically significant CoMFA and CoMSIA models, with the best q(2) value being 0.649 and the best predictive r(2) being 0.754. The manual alignment gave statistically higher values, whereas the automated alignment gave more robust models for predicting the activities of an external inhibitor set. Both models utilized similar amino acids in the HIV-1 PR active site, supporting the idea that hydrogen bonds form between an inhibitor and the backbone carbonyl oxygens of Gly48 and Gly48' and also the backbone NH group of Asp30, Gly48, Asp29', and Gly48' of the enzyme. These results suggest that an automated inhibitor alignment can yield predictive 3D QSAR models that are well comparable to manual methods. Thus, an automated alignment method in creating 3D QSAR models is encouragable when a well-characterized structure of the target protein is available.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号