首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preventing deadlock during anisotropic 2D mesh adaptation in hp-adaptive FEM
Institution:1. Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR.
Abstract:The paper presents a grammar for anisotropic two-dimensional mesh adaptation in hp-adaptive Finite Element Method with rectangular elements. Expressing mesh transformations as grammar productions is useful for concurrency analysis thanks to exhibiting the partial causality order (Lamport relationship) between atomic operations. It occurs that a straightforward approach to modeling this process via grammar productions leads to potential deadlock in h-adaptation of the mesh. This fact is shown on a Petri net model of an exemplary adaptation. Therefore auxiliary productions are added to the grammar in order to ensure that any sequence of productions allowed by the grammar does not lead to a deadlock state. The fact that the enhanced grammar is deadlock-free is proven via a corresponding Petri net model. The proof has been performed by means of reachability graph construction and analysis. The paper is concluded with numerical simulations of magnetolluric measurements where the deadlock problem occurred.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号