首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An endochronic model of yield surface accounting for deformation induced anisotropy
Institution:1. Department of Mathematics and Applied Mathematics, University of Cape Town, 7701 Rondebosch, South Africa;2. Institute of Geonics of the Czech Academy of Sciences, Department of Applied Mathematics and Computer Science & Department IT4Innovations, 708 00 Ostrava-Poruba, Czech Republic
Abstract:In this article, an endochronic model of yield surface is proposed. Based on this model, the yield surface is simulated such that the forward and rear parts of the yield surface are described by different ellipses which are characterized by corresponding aspect ratio functions, respectively. Verification of the endochronic theory used the experimental results of yield surfaces obtained by Wu and Yeh for 304 stainless steel (Wu, H.C., Yeh, W.C., 1991. On the experimental determination of yield surfaces and some results of annealed 304 stainless steel. Int. J. Plasticity 7, 803–826). The experiments were performed cyclically under uniaxial, torsional, and combined axial–torsional loading conditions. The result has shown that the agreement between the prediction and experiments is quite satisfactory. In addition to the distortion of the yield surface plastically behaving a sharp front accompanied by a blunt rear, the anisotropic kinematic hardening effect has been addressed in this investigation. Although the experimental results of yield surfaces subjected to non-proportional loading conditions can be found in the literature, lack of information about the plastic strain history makes it impossible to verify the theory under such complicated loading conditions. The domain of applicability and validity of the theory, which is defined in terms of plastic strain increments, need be further investigated with the aim to set up related experiments.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号