首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vector-valued fractal functions: Fractal dimension and fractional calculus
Abstract:There are many research available on the study of a real-valued fractal interpolation function and fractal dimension of its graph. In this paper, our main focus is to study the dimensional results for a vector-valued fractal interpolation function and its Riemann–Liouville fractional integral. Here, we give some results which ensure that dimensional results for vector-valued functions are quite different from real-valued functions. We determine interesting bounds for the Hausdorff dimension of the graph of a vector-valued fractal interpolation function. We also obtain bounds for the Hausdorff dimension of the associated invariant measure supported on the graph of a vector-valued fractal interpolation function. Next, we discuss more efficient upper bound for the Hausdorff dimension of measure in terms of probability vector and contraction ratios. Furthermore, we determine some dimensional results for the graph of the Riemann–Liouville fractional integral of a vector-valued fractal interpolation function.
Keywords:Iterated function systems  Fractal interpolation functions  Hausdorff dimension  Box dimension  Open set condition  Riemann–Liouville fractional integral
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号