首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sequential In Vitro Cyclization by Cytochrome P450 Enzymes of Glycopeptide Antibiotic Precursors Bearing the X‐Domain from Nonribosomal Peptide Biosynthesis
Authors:Dr Clara Brieke  Madeleine Peschke  Dr Kristina Haslinger  Dr Max J Cryle
Institution:Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg (Germany)
Abstract:The biosynthesis of the glycopeptide antibiotics, which include vancomycin and teicoplanin, relies on the interplay between the peptide‐producing non‐ribosomal peptide synthetase (NRPS) and Cytochrome P450 enzymes (P450s) that catalyze side‐chain crosslinking of the peptide. We demonstrate that sequential in vitro P450‐catalyzed cyclization of peptide substrates is enabled by the use of an NRPS peptide carrier protein (PCP)‐X di‐domain as a P450 recruitment platform. This study reveals that whilst the precursor peptide sequence influences the installation of the second crosslink by the P450 OxyAtei, activity is not restricted to the native teicoplanin peptide. Initial peptide cyclization is possible with teicoplanin and vancomycin OxyB homologues, and the latter displays excellent activity with all substrate combinations tested. By using non‐natural X‐domain substrates, bicyclization of hexapeptides was also shown, which demonstrates the utility of this method for the cyclization of varied peptide substrates in vitro.
Keywords:biosynthesis  cytochrome p450s  glycopeptide antibiotics  non‐ribosomal peptide synthetases  peptide crosslinking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号