首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络与多分类支持向量机的水质识别与分类
作者姓名:赖清衷卫声熊鹏文黄嘉诚任倩茹
作者单位:南昌大学信息工程学院
摘    要:介绍BP神经网络与多分类支持向量机等分类模型的基本原理,并基于这两种方法对水质识别与分类的准确度进行实例比较研究,随机抽取了南昌市内2010-2013年水域水质的300组数据为样本,选取了pH,氨氮,Cl-,SO2-3,总硬度,硝酸盐氮为评价的主要特征。通过把训练后的模型在测试集中进行的检验对得到的模型进行评估,表明了BP神经网络和多分类支持向量机均可以较好地解决水质识别与分类过程中存在的复杂性,多变量,非线性等问题,相比较而言多分类支持向量机有较强的鲁棒性,预测结果更为精确稳定,将其应用到水质评价中具有一定的可行性。更多还原

关 键 词:水质分类  BP神经网络  多分类支持向量机  
本文献已被 CNKI 等数据库收录!
点击此处可从《南昌大学学报(理科版)》浏览原始摘要信息
点击此处可从《南昌大学学报(理科版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号