首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rhodium complexes of a chelating ligand with imidazol-2-ylidene and pyridin-2-ylidene donors: the effect of C-metalation of nicotinamide groups on uptake of hydride ion
Authors:McSkimming Alex  Ball Graham E  Bhadbhade Mohan M  Colbran Stephen B
Institution:School of Chemistry, The University of New South Wales, Sydney, NSW 2052 Australia.
Abstract:Rhodium complexes of the imidazolylidene (C-im) N-heterocyclic carbene (NHC) ligand, C-im-pyH(+), bearing a nicotinamide cation substituent (pyH(+)) have been targeted for ligand-centered uptake and delivery of hydride ion. This work reveals that rhodium(I) complexes such as Rh(C-im-pyH(+))(COD)X]PF(6)] (1, a: X = Cl, b: X = I) undergo facile C-metalation of the nicotinamide ring to afford rhodium complexes of a novel chelate ligand, C,C'-im-py, with coordinated imidazolylidene (C(im)) and pyridylidene (C(py)) NHC-donors. Seven examples were characterized and include rhodium(III) monomers of the general formula Rh(C,C'-im-py)L(x)I(2)](z+) (2: z = 1, L = H(2)O or solvent, x = 2; 3, 5, 7: z = 0, L = carboxylate, x = 1) and novel rhodium(II) dimers, the anti/syn-isomers of Rh(2)(C,C'-im-py)(2)(μOAc)(2)I(2)] (4-anti/syn). The NMR data, backed by DFT calculations, is consistent with attribution of the C,C'-im-py ligand as a bis(carbene) donor. Single crystal X-ray diffraction studies are reported for 2, 3, 4-anti, 4-syn and 7. Consistently, within the each complex, the Rh-C(im) bond length is shorter than the Rh-C(py) bond length, which is the opposite trend to that expected based on simple electronic considerations. It is proposed that intramolecular steric interactions imposed by different rings in the rigid C,C'-im-py chelate ligand dictate the observed Rh-C(NHC) bond lengths. Attempts to add hydride to the C-metalated nicotinamide ring in 3 were unsuccessful. The redox behavior of 3 and 4 and, for comparison, an analogous bis(imidazolylidene)rhodium(III) monomer (8), were characterized by cyclic voltammetry, electron paramagnetic resonance (EPR), and UV-vis spectroelectrochemistry. In 3 and 4, the C-metalated nicotinamide ring is found to exhibit a one-electron reduction process at far lower potential (-2.34 V vs. Fc(+)/Fc in acetonitrile) than the two-electron nicotinamide cation-dihydronicotinamide couple found for the corresponding nonmetalated ring (-1.24 V). The C,C'-ligand is electrochemically silent over a large potential range (from -2.3 V to the anodic solvent limit), thus for both 3 and 4 the first reduction processes are metal-centered. For 4-anti, the cyclic voltammetry and UV-vis spectrochemical results are consistent with a diamagnetic Rh(I)Rh(II)](2) tetrameric reduction product. Density functional theory (DFT) calculations were used to further probe the uptake of hydride ion by the nicotinamide ring, both before and after C-metalation. It is found that C-metalation significantly decreases the ability of the nicotinamide ring to take up hydride ion, which is attributed to the "carbene-like" character of a C-metalated pyridylidene ring.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号