首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Artificial photosynthetic reaction centers: mimicking sequential electron and triplet-energy transfer.
Authors:Rodrigo E Palacios  Gerdenis Kodis  Stephanie L Gould  Linda de la Garza  Alicia Brune  Devens Gust  Thomas A Moore  Ana L Moore
Institution:Department of Chemistry and Biochemistry, Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, AZ 85287-1604, USA.
Abstract:An artificial photosynthetic reaction center consisting of a carotenoid (C), a dimesitylporphyrin (P), and a bis(heptafluoropropyl)porphyrin (P(F)), C-P-P(F) , and the related triad in which the central porphyrin has been metalated to give C-P(Zn)-P(F) have been synthesized and characterized by transient spectroscopy. These triads are models for amphipathic triads having a carboxylate group attached to the P(F) moiety; they are designed to carry out redox processes across lipid bilayers. Triad C-P-P(F) undergoes rapid singlet-singlet energy transfer between the porphyrin moieties, so that their excited states are in equilibrium. In benzonitrile, photoinduced electron transfer from the first excited singlet state of P and hole transfer from the first excited singlet state of P(F) yield the initial charge-separated state C-P(.) (+)-P(F) (.) (-). Subsequent hole transfer to the carotenoid moiety generates the final charge-separated state C(.) (+)-P-P(F) (.) (-), which has a lifetime of 1.1 mus and is formed with a quantum yield of 0.24. In triad C-P(Zn)-P(F) energy transfer from the P(Zn) excited singlet to the P(F) moiety yields C-P(Zn)-(1)P(F) . A series of electron-transfer reactions analogous to those observed in C-P-P(F) generates C(.) (+)-P(Zn)-P(F) (.) (-), which has a lifetime of 750 ns and is formed with a quantum yield of 0.25. Flash photolysis experiments in liposomes containing an amphipathic version of C-P(Zn)-P(F) demonstrate that the added driving force for photoinduced electron transfer in the metalated triad is useful for promoting electron transfer in the low-dielectric environment of artificial biological membranes. In argon-saturated toluene solutions of C-P-P(F) and C-P(Zn)-P(F) , charge separation is not observed and a considerable yield of triplet species is generated upon excitation of the porphyrin moieties. In both triads triplet energy localized in the P(F) moiety is channeled to the carotenoid chromophore by a triplet energy-transfer relay mechanism. Certain photophysical characteristics of these triads, including the sequential electron transfer and the triplet energy-transfer relay mechanism, are reminiscent of those observed in natural reaction centers of photosynthetic bacteria.
Keywords:carotenoids  electron transfer  fluorescence spectroscopy  porphyrins  time‐resolved spectroscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号