首页 | 本学科首页   官方微博 | 高级检索  
     


Nanoparticle‐enhanced light trapping in thin‐film silicon solar cells
Authors:Zi Ouyang  Xiang Zhao  Sergey Varlamov  Yuguo Tao  Johnson Wong  Supriya Pillai
Abstract:A systematic investigation of the nanoparticle‐enhanced light trapping in thin‐film silicon solar cells is reported. The nanoparticles are fabricated by annealing a thin Ag film on the cell surface. An optimisation roadmap for the plasmon‐enhanced light‐trapping scheme for self‐assembled Ag metal nanoparticles is presented, including a comparison of rear‐located and front‐located nanoparticles, an optimisation of the precursor Ag film thickness, an investigation on different conditions of the nanoparticle dielectric environment and a combination of nanoparticles with other supplementary back‐surface reflectors. Significant photocurrent enhancements have been achieved because of high scattering and coupling efficiency of the Ag nanoparticles into the silicon device. For the optimum light‐trapping scheme, a short‐circuit current enhancement of 27% due to Ag nanoparticles is achieved, increasing to 44% for a “nanoparticle/magnesium fluoride/diffuse paint” back‐surface reflector structure. This is 6% higher compared with our previously reported plasmonic short‐circuit current enhancement of 38%. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:nanoparticle  surface plasmon  light trapping  solar cell  silicon thin film  photocurrent
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号