A comprehensive kinetic model is developed for a semi‐interpenetrating polymer network (SIPN) process, which involves simultaneous crosslinking, grafting, and degradation. Computational expense has been reduced considerably through a new component decomposition strategy, where a continuous variable approximation and a fixed pivot technique are applied for modeling each component. The inter‐polymer formulation is then reconstructed by a statistical approach. Based on the kinetic parameters obtained from the literature and a series of experiments, the model provides consistent agreement for gel fraction, joint molecular weight distribution (MWD) and polymer composition predicted in the studied cases, showing promising capability for the SIPN industrial application as well as for other polymer composite systems.