首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Specimen and Grain Size Effects of Al1100 on Strain and Strain Rate Hardening at Various Strain Rates for Al1100
Authors:JB Kwon  H Huh  JS Kim
Institution:1. School of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, Daeduk Science Town, Daejeon, 305-701, South Korea
2. Railway Structure Research Department, Korea Railroad Research Institute, 360-1, Woram-Dong, Uiwang-Si, Gyeonggi-Do, 437-757, South Korea
Abstract:This paper is concerned with comparison of the tensile properties of Al1100 thin film in a micro-scale to that of Al1100 sheet in a macro-scale. The material properties of Al1100 film and sheet with a thickness of 96 μm and 1 mm respectively have been investigated at strain rates ranging from 0.001 to 100 s?1. The experiments were conducted with Static Micro-Material Testing Machine (SMMTM) and High Speed Micro-Material Testing Machine (HSMMTM) for micro-specimens and with Instron 5583 and high speed material testing machine (HSMTM) for macro-specimens. A reliable jig system for SMMTM and HSMMTM has been newly developed for easy installation of a specimen and accurate alignment between a specimen and the jig system to enhance the reproducibility of tests. The digital image correlation (DIC) method is employed to measure the axial strain of the specimens. In order to obtain a fine speckle pattern for the DIC method, a novel technique is employed to print the speckle pattern with fine particles by blowing sprayed particles before printing. The grain sizes of two Al1100 specimens have been compared and the number of grains in the gauge cross-section has been calculated to obtain the grain number which is related to the specimen size effect. Electron Back Scattered Diffraction (EBSD) images were obtained for both micro-specimens and macro-specimens and analyzed to measure the grain size. The Al1100 film with a smaller average grain size shows larger strain hardening than the Al1100 sheet with a larger average grain size.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号