首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sorption and diffusion of water in poly(vinylpyrrolidone)
Authors:A E Chalykh  V K Gerasimov  A A Shcherbina  G S Kulagina  R R Khasbiullin
Institution:(1) Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119991, Russia
Abstract:The effect of molecular mass, thermal prehistory, physical state, and three-dimensional chemical crosslinked structure of a polymer on dissolution and diffusion in the PVP-water system has been studied. The kinetic dependences of sorption that correspond to the Fickian or pseudonormal type have been measured. In a certain concentration range, sorption is accompanied by transition of the system to the rubbery state. In the glassy state, the negative concentration dependence of the diffusion coefficient related to the nonequilibrium state of the polymer sorbent is observed. Sorption isotherms are described by S-shaped curves. It has been shown that the thermal prehistory of the polymer sorbent has the most pronounced effect on its sorption behavior. The effect of molecular mass is insignificant, while three-dimensional chemical crosslinks in PVP manifest themselves only in the region of the rubbery state. In accordance with the double sorption model, the experimental isotherms are represented as the superposition of two isotherms described by the Langmuir and Flory-Huggins equations. For the glassy state of the polymer sorbent, the degree of the nonequilibrium state has been estimated. With due regard for the excess free volume, the detailed thermodynamic analysis of isotherms has been performed; namely, the pair interaction parameters and the free energy of mixing have been calculated. The state of water in the polymer has been examined within the framework of hydrate contributions and clusterization theory.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号