首页 | 本学科首页   官方微博 | 高级检索  
     


Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Abstract:We analytically and numerically discuss the stability and dynamics of neutral atoms in a two-dimensional optical lattice subjected to an additional harmonic trap potential and artificial magnetic field. The harmonic trap potential plays a key role in modifying the equilibrium state properties of the system and stabilizing the cyclotron orbits of the condensate.Meanwhile, the presence of the harmonic trap potential and lattice potential results in rich cyclotron dynamics of the condensate. The coupling effects of lattice potential, artificial magnetic field, and harmonic trap potential lead to single periodic, multi-periodic or quasi-periodic cyclotron orbits of the condensate. So we can control the cyclotron dynamics of neutral atoms in optical lattice by manipulating the strength of harmonic confinement, artificial magnetic field, and initial conditions. Our results provide a direct theoretical evidence for the cyclotron dynamics of neutral atoms in optical lattices exposed to the artificial gauge magnetic field and harmonic trap potential.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号