首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Particle behavior in thermal plasmas
Authors:Pfender  E
Institution:1.Department of Mechanical Engineering,University of Minnesota,Minneapolis
Abstract:In this overview, effects exerted on the motion and on heat and mass transfer of particulates injected into a thermal plasma are discussed, including an assessment of their relative importance in the context of thermal plasma processing of materials. Results of computer experiments are shown for particle sizes ranging from 5–50 μm, and for alumina and tungsten as sample materials. The results indicate that (i) the correction terms required for the viscous drag and the convective heat transfer due to strongly varying properties are the most important factors; (ii) noncontinuum effects are important for particle sizes <10 μm at atmospheric pressure, and these effects will be enhanced for smaller particles and/or reduced pressures; (iii) the Basset history term is negligible, unless relatively large and light particles are considered over long processing distances; (iv) thermophoresis is not crucial for the injection of particles into thermal plasmas; (v) turbulent dispersion becomes important for particle <10 μm in diameter; and (vi) vaporization describes a different particle heating history than that of the evaporation process which, however, is not a critical control mechanism for interphase mass transfer of particles injected into thermal plasmas.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号