首页 | 本学科首页   官方微博 | 高级检索  
     


Deuterium kinetic isotope effects on the gas-phase reactions of C2H with H2(D2) and CH4(CD4)
Authors:Matsugi Akira  Suma Kohsuke  Miyoshi Akira
Affiliation:Department of Chemical Systems Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
Abstract:Kinetics of the ethynyl (C(2)H) radical reactions with H(2), D(2), CH(4) and CD(4) was studied over the temperature range of 295-396 K by a pulsed laser photolysis/chemiluminescence technique. The C(2)H radicals were generated by ArF excimer-laser photolysis of C(2)H(2) or CF(3)C(2)H and were monitored by the chemiluminescence of CH(A(2)Δ) produced by their reaction with O(2) or O((3)P). The measured absolute rate constants for H(2) and CH(4) agreed well with the available literature data. The primary kinetic isotope effects (KIEs) were determined to be k(H(2))/k(D(2)) = 2.48 ± 0.14 and k(CH(4))/k(CD(4)) = 2.45 ± 0.16 at room temperature. Both of the KIEs increased as the temperature was lowered. The KIEs were analyzed by using the variational transition state theory with semiclassical small-curvature tunneling corrections. With anharmonic corrections on the loose transitional vibrational modes of the transition states, the theoretical predictions satisfactorily reproduced the experimental KIEs for both C(2)H + H(2)(D(2)) and C(2)H + CH(4)(CD(4)) reactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号