首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transport of charged samples in fluidic channels with large zeta potentials
Authors:Dutta Debashis
Institution:Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA. ddutta@uwyo.edu
Abstract:In this article, we present an analysis on the transport of charged samples through micro- and nanofluidic channels with large zeta potentials (|zeta| > (kBT)/e). Using the Method of Moments formulation, the diffusion-convection equation has been solved to evaluate the mean velocity and the dispersion of analyte bands in a parallel-plate device under electrokinetically- and pressure-driven flow conditions. The effect of electromigration induced by the lateral electric field within the Debye layer has been quantified in our work using a Peclet number (Pe t) based on the characteristic electrophoretic velocity of the solute molecules in the transverse direction. It has been shown that while the effects of transverse electromigration on analyte transport only depends on the product Pe t zeta* for |zeta*| = (ezeta)/kBT < 1, both these parameters independently affect the flow of charged species in large zeta potential systems. For a given value of Pe t zeta*, the mean velocity and the slug dispersivity can vary by as much as an order of magnitude in going from a small zeta potential system (|zeta*| < 1) to a channel with |zeta*| = 4.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号