Affiliation: | 1. Institute of Physical Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany;2. Institute of Physical Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova INSTM, UdR di Padova, Italy;3. Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova |
Abstract: | The precise detection of the toxic gas H2S requires reliable sensitivity and specificity of sensors even at minute concentrations of as low as 10 ppm, the value corresponding to typical exposure limits. CuO can be used for H2S dosimetry, based on the formation of conductive CuS and the concomitant significant increase in conductance. In theory, at elevated temperature the reaction is reversed and CuO is formed, ideally enabling repeated and long-term use of one sensor. Yet, the performance of CuO tends to drop upon cycling. Utilizing defined CuO nanorods we thoroughly elucidated the associated detrimental chemical changes directly on the sensors, by Raman and electron microscopy analysis of each step during sensing (CuO→CuS) and regeneration (CuS→CuO) cycles. We find the decrease in the sensing performance is mainly caused by the irreversible formation of CuSO4 during regeneration. The findings allowed us to develop strategies to reduce CuSO4 formation and thus to substantially maintain the sensing stability even for repeated cycles. We achieved CuO-based dosimeters possessing a response time of a few minutes only, even for 10 ppm H2S, and prolonged life-time. |