首页 | 本学科首页   官方微博 | 高级检索  
     


Synchrotron X-ray Electron Density Analysis of Chemical Bonding in the Graphitic Carbon Nitride Precursor Melamine
Authors:Emilie S. Vosegaard  Dr. Maja K. Thomsen  Dr. Lennard Krause  Thomas B. E. Grønbech  Dr. Aref Mamakhel  Seiya Takahashi  Prof. Dr. Eiji Nishibori  Prof. Dr. Bo B. Iversen
Affiliation:1. Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark;2. Department of Physics, Faculty of Pure and Applied Sciences and, Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, Ibaraki, 305-8571 Japan
Abstract:Melamine is a precursor and building block for graphitic carbon nitride (g-CN) materials, a group of layered materials showing great promise for catalytic applications. The synthetic pathway to g-CN includes a polycondensation reaction of melamine by evaporation of ammonia. Melamine molecules in the crystal organize into wave-like planes with an interlayer distance of 3.3 Å similar to that of g-CN. Here we present an extensive investigation of the experimental electron density of melamine obtained from modelling of synchrotron radiation X-ray single-crystal diffraction data measured at 25 K with special focus on the molecular geometry and intermolecular interactions. Both intra- and interlayer structures are dominated by hydrogen bonding and π-interactions. Theoretical gas-phase optimizations of the experimental molecular geometry show that bond lengths and angles for atoms in the same chemical environment (C−N bonds in the ring, amine groups) differ significantly more for the experimental geometry than for the gas-phase-optimized geometries, indicating that intermolecular interactions in the crystal affects the molecular geometry. In the experimental crystal geometry, one amine group has significantly more sp3-like character than the others, hinting at a possible formation mechanism of g-CN. Topological analysis and energy frameworks show that the nitrogen atom in this amine group participates in weak intralayer hydrogen bonding. We hypothesize that melamine condenses to g-CN within the layers and that the unique amine group plays a key role in the condensation process.
Keywords:chemical bonding  electron density  graphitic carbon nitride  melamine  synchrotron X-ray diffraction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号